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Our goals...

Approximate Bayesian Computation (ABC)
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Background: Bayesian methods

Goal: the posterior distribution of the unknown parameter(s) θ.

Posterior distribution

π(θ |
Data︷︸︸︷
y ) =

Likelihood︷ ︸︸ ︷
f (y | θ) ·

Prior︷︸︸︷
π(θ)

f (y)
∝ f (y | θ)π(θ)

The prior distribution allows you to “easily” incorporate your
beliefs about the parameter(s) of interest

Posterior is a distribution on the parameter space given the
observed data
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The posterior for θ given observed data xobs:

π(θ | xobs) =
f (xobs | θ)π(θ)∫
f (xobs | θ)π(θ)dθ

=
f (xobs | θ)π(θ)

f (xobs)

Approximate Bayesian Computation

“Likelihood-free” approach to approximating π(θ | xobs)

Proceeds via simulation of the forward process

Why would we not know f (xobs | θ)?

1 Physical model too complex to put in analytical form
2 Strong dependency in data
3 Observational limitations
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ABC for Astronomy

cosmoabc: Likelihood-free inference via Population Monte Carlo
Approximate Bayesian Computation (Ishida et al., 2015)

Approximate Bayesian Computation for Forward Modeling in Cosmology
(Akeret et al., 2015)

Likelihood-Free Cosmological Inference with Type Ia Supernovae:
Approximate Bayesian Computation for a Complete Treatment of
Uncertainty (Weyant et al., 2013)

Likelihood - free inference in cosmology: potential for the estimation of
luminosity functions (Schafer and Freeman, 2012)

Approximate Bayesian Computation for Astronomical Model Analysis: A
case study in galaxy demographics and morphological transformation at
high redshift (Cameron and Pettitt, 2012)
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From Weyant et al. (2013)

6



Basic ABC algorithm
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Basic ABC algorithm

For the observed data xobs and prior π(θ):

Algorithm∗

1 Sample θprop from prior π(θ)

2 Generate xprop from forward process f (x | θprop)
3 Accept θprop if xobs = xprop
4 Return to step 1

Generates a sample from an approximation of the posterior

∗Introduced in Pritchard et al. (1999) (population genetics)
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Step 3: Accept θprop if xobs = xprop

Waiting for proposals such that xobs = xprop would be computationally
prohibitive

Instead, accept proposals with ∆(xobs, xprop) ≤ ε
for some distance ∆ and some tolerance threshold ε

When x is high-dimensional, will have to make ε too large in order to
keep acceptance probability reasonable.

Instead, reduce the dimension by comparing summaries
S(xprop) and S(xobs)
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Simple examples
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ABC illustration: binomial distribution

Data y1:n
iid∼ Bern(θ) where n = sample size, θ = P(Y = 1)

Forward process F (x | θ) =
(n
x

)
θx(1− θ)n−x , where x =

∑n
i=1 xi

(In this case, we use the likelihood)

Distance function ρ(y , x) = |y − x |
Hence ρ(y , x) = 0 if the generated dataset x has the same number
of 1’s as y

Tolerance ε = 0

Prior π(θ) = Uniform(0,1)

Reference: Turner and Zandt (2012)
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Binomial illustration: R code

n <- 25 #number of observations

N <- 1000 #generated sample size

true.theta <- .75

data <- rbinom(n,1,true.theta)

epsilon <- 0 #Tolerance

theta <- numeric(N)

rho <- function(y,x) abs(sum(y)-sum(x))/n #Distance function

for(i in 1:N){

d <- epsilon+1

while(d>epsilon) {

proposed.theta <- rbeta(1,1,1) #Prior

x <- rbinom(n,1,proposed.theta) #Forward process

d <- rho(data,x)

}

theta[i] <- proposed.theta

}
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Binomial illustration: ABC posterior
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Binomial illustration: ABC posterior
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Binomial illustration: ABC posterior
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Gaussian illustration

Data xobs consists of 25 iid draws from Normal(µ, 1)

Summary statistics S(x) = x̄

Distance function ∆(S(xprop), S(xobs)) = |x̄prop − x̄obs|

Tolerance ε = 0.50 and 0.10

Prior π(µ) = Normal(0,10)
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Gaussian illustration: posteriors for µ

Tolerance: 0.5, N:1000, n:25
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Some intuition about ABC
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If one wants to generate a draw from the posterior:
1 Draw θprop from the prior π(θ).
2 Draw xprop from the density f (x | θprop).
3 Accept θprop if xprop = xobs.

Why?

Let θacc denote an accepted θprop. Then, for any θ,

P(θacc = θ) = P(θprop = θ | xprop = xobs)

= P(xprop = xobs | θprop = θ)P(θprop = θ)

/
P(xprop = xobs)

= f (xobs | θ)π(θ)

/
f (xobs) = π(θ | xobs)

in the case where θ is discrete.

Illustration from Chad Schafer (CMU)
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If one wants to generate a draw from the posterior:
1 Draw θprop from the prior π(θ).
2 Draw xprop from the density f (x | θprop).
3 Accept θprop if xprop = xobs.

Why? Let θacc denote an accepted θprop. Then, for any T ⊆ IR,

P(θacc ∈ T ) = P(θprop ∈ T | xprop = xobs)

=

∫
T

P(xprop = xobs | θprop = θ)π(θ) dθ

/
P(xprop = xobs)

=

∫
T

f (xobs | θ)π(θ) dθ

/
f (xobs) =

∫
T

π(θ | xobs) dθ

in the case where θ is continuous.
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If one wants to generate a draw from the posterior:

1 Draw θprop from the prior π(θ).

2 Draw xprop from the density f (x | θprop).

3 Accept θprop if xprop = xobs.

Why? Let θacc denote an accepted θprop. Then, for any T ⊆ IR,

P(θacc ∈ T ) = P(θprop ∈ T | xprop = xobs)

= K

∫
T
P(xprop = xobs | θprop = θ)π(θ) dθ

= K

∫
T
f (xobs | θ)π(θ) dθ =
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T
π(θ | xobs) dθ

in the case where θ is continuous.
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If one wants to generate a draw from the posterior:

1 Draw θprop from the prior π(θ).

2 Draw xprop from the density f (x | θprop).

3 Accept θprop if ???

Why? Let θacc denote an accepted θprop. Then, for any T ⊆ IR,

P(θacc ∈ T ) = P(θprop ∈ T | Accept θprop)

= K

∫
T
P(Accept θprop | θprop = θ)π(θ) dθ

?
= K ′

∫
T
f (xobs | θ)π(θ) dθ =

∫
T
π(θ | xobs) dθ

in the case where θ is continuous.
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The Point:

θacc is a draw from the posterior if

P(Accept θprop | θprop = θ) ∝ f (xobs|θ) (the likelihood)

This creates a basis for assessing the quality of the approximation,
irrespective of the prior.

To achieve this, we could accept θprop if xprop = xobs.
Of course, this is not practical.
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Clear alternative is to accept θprop if xprop is “close to” xobs using
some chosen distance metric ∆.

What is the price of this approximation?

Define:

φε(xprop, xobs) =

{
1, if ∆(xprop, xobs) < ε
0, if ∆(xprop, xobs) ≥ ε

In other words, φε(xprop, xobs) is an indicator as to whether or not
xprop is close to xobs.
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Hence,

P(Accept θprop | θprop = θ) = P(∆(xprop, xobs) < ε | θprop = θ)

=

∫
φε(x , xobs)f (x | θ) dx

−→ Kf (xobs | θ) as ε→ 0

Hence, for ε small,

P(Accept θprop | θprop = θ) ≈ Kf (xobs | θ)
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Toy Example: Assume that xobs is Gaussian with mean θ and
variance one.
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xxx

−2 −1 0 1 2 3 4

x

Depicts the convolution∫
φε(x , xobs)f (x | θ) dx = P(Accept θprop | θprop = θ)

for case where xobs = 1, θ = 0, ε = 0.1.
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xxx

−2 −1 0 1 2 3 4

x

Depicts the convolution∫
φε(x , xobs)f (x | θ) dx = P(Accept θprop | θprop = θ)

for case where xobs = 1, θ = 1, ε = 0.1.
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xxx

−2 −1 0 1 2 3 4

θ

Likelihood

Acceptance Prob.

Compare these quantities for all θ. Case where xobs = 1, ε = 0.1.
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xxx

−2 −1 0 1 2 3 4

x

Depicts the convolution∫
φε(x , xobs)f (x | θ) dx = P(Accept θprop | θprop = θ)

for case where xobs = 1, θ = 0, ε = 0.4.
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xxx

−2 −1 0 1 2 3 4

x

Depicts the convolution∫
φε(x , xobs)f (x | θ) dx = P(Accept θprop | θprop = θ)

for case where xobs = 1, θ = 1, ε = 0.4.
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xxx

−2 −1 0 1 2 3 4

θ

Likelihood

Acceptance Prob.

Compare these quantities for all θ. Case where xobs = 1, ε = 0.4.
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xxx

−2 −1 0 1 2 3 4

θ

Likelihood

Acceptance Prob.

Case where xobs = 1, ε = 1.
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Data summaries

Ideally, Sx is sufficient, i.e.

f (x | Sx , θ) = f (x | Sx)

as this implies that

f (x | θ) = f (x | θ, Sx)f (Sx | θ) ∝ f (Sx | θ)

Examples:
1 Ȳ = n−1

∑n
i=1 Yi is a sufficient statistic for µ where Yi

are iid N(µ, 1), i = 1, . . . , n
2 Y(n) = max{Y1, . . . ,Yn} is a sufficient statistic for θ

where Yi are iid U(0, θ), i = 1, . . . , n
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In a nutshell

“The basic idea behind ABC is that using a representative
(enough) summary statistic η coupled with a small (enough)
tolerance ε should produce a good (enough) approximation to the
posterior...”

Marin et al. (2012)
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In a nutshell

“The basic idea behind ABC is that using a representative
(enough) summary statistic η coupled with a small (enough)
tolerance ε should produce a good (enough) approximation to the
posterior...”

Marin et al. (2012)

How to pick a tolerance, ε?
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Sequential ABC
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Sequential ABC

Main idea

Instead of starting the ABC algorithm over with a smaller tolerance
(ε), use the already sampled particle system as a proposal
distribution rather than drawing from the prior distribution.

Particle system:

(1) retained sampled values, (2) importance weights

Some references:

Beaumont et al. (2009); Moral et al. (2011); Bonassi and West (2004)
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Monte Carlo integration −→
Importance sampling
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MC Integration

General idea

Monte Carlo methods are a form of stochastic integration used to
approximate expectations by invoking the law of large numbers.

I =

∫ b

a
h(y)dy =

∫ b

a
w(y)f (y)dy = Ef (w(Y ))

where f (y) = 1
b−a and w(y) = h(y) · (b − a)

f (y) = 1
b−a is the pdf of a U(a,b) random variable

By the LLN, if we take an iid sample of size N from U(a, b), we
can estimate I as

Î = N−1
N∑
i=1

w(Yi ) −→ E (w(Y )) = I
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MC Integration: Gaussian CDF example?

Goal: estimate FY (y) = P(Y ≤ y) = E
[
I(−∞,y)(Y )

]
where

Y ∼ N(0, 1):

F (Y ≤ y) =

∫ y

−∞

1√
2π

e−t
2/2dt =

∫ ∞
−∞

h(t)
1√
2π

e−t
2/2dt

where h(t) = 1 if t < y and h(t) = 0 if t ≥ y

Draw an iid sample Y1, . . . ,YN from a N(0, 1), then the estimator
is

Î = N−1
N∑
i=1

h(Yi ) =
# draws < x

N

? Example 24.2 of Wasserman (2004)
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Importance Sampling: motivation

Standard Monte Carlo integration is great if you can sample from
the target distribution (i.e. the desired distribution)
−→ But what if you can’t sample from the target?

Idea of importance sampling: draw the sample from a proposal
distribution and re-weight the integral using importance weights so
that the correct distribution is targeted
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MC Integration −→ Importance Sampling

I =

∫
h(y)f (y)dy

h is some function and f is the probability density function of Y

When the density f is difficult to sample from, importance
sampling can be used

Rather than sampling from f , you specify a different probability
density function, g , as the proposal distribution.

I =

∫
h(y)f (y)dy =

∫
h(y)

f (y)

g(y)
g(y)dy =

∫
h(y)f (y)

g(y)
g(y)dy
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Importance Sampling

I = Ef [h(Y )] =

∫
h(y)f (y)

g(y)
g(y)dy = Eg

[
h(Y )f (Y )

g(Y )

]

Hence, given an iid sample Y1, . . . ,YN from g , our estimator of I
becomes

Î = N−1
N∑
i=1

h(Yi )f (Yi )

g(Yi )
−→ Eg

[
h(Y )f (Y )

g(Y )

]
= I
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Importance sampling: Illustration

Goal: estimate P(Y < 0.3) where Y ∼ f

Try two proposal distributions: U(0,1) and U(0,4)
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If we take 1000 samples
of size 100, and find
the IS estimates, we get
the following estimated
expected values and
variances.

Expected Value Variance

Truth 0.206 0
g1: U(0,1) 0.206 0.0014
g2: U(0,4) 0.211 0.0075
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Extensions of Importance Sampling

Sequential Importance Sampling

Sequential Monte Carlo (Particle Filtering)
−→ See Doucet et al. (2001)

Approximate Bayesian Computation −→ See Turner and Zandt (2012)
for a tutorial, and Cameron and Pettitt (2012); Weyant et al. (2013) for
applications to astronomy
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Importance sampling can be used in ABC to improve the
computational efficiency.
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Algorithm 1 ABC - Population Monte Carlo algorithm∗

1: At iteration t = 1
2: Algorithm 1: Basic ABC sampler to obtain {θ(i)1 }

N
i=1

3: Set importance weights W
(i)
1 = 1/N for i = 1, . . . ,N

4: for t = 2 to T do
5: Set τ 2t = 2 · var

(
{θ(i)t−1,W

(i)
t−1}

N
i=1

)
6: for i = 1 to N do
7: while ρ (S(y1:n), S(x1:n)) > εt do

8: Draw θ0 from {θ(i)t−1}
N
i=1 with probabilities {W (i)

t−1}
N
i=1

9: Propose θ∗ ∼ N(θ0, τ
2
t )

10: Generate x1:n from F (x | θ∗)
11: Calculate summary statistics {Sy , Sx}
12: end while
13: θ

(i)
t ← θ∗

14: W̃
(i)
t ←

π
(
θ
(i)
t

)
∑N

j=1 W
(j)
t−1φ

[
τ−1
t (θ

(i)
t −θ

(j)
t−1)

]
15: end for
16: {W (i)

t }Ni=1 ← {W̃
(i)
t }Ni=1/

∑N
i=1 W̃

(i)
t

17: end for

Decreasing tolerances ε1 ≥ · · · ≥ εT , φ(·) is the density function of a N(0, 1)
∗From Beaumont et al. (2009) 46



Gaussian illustration: sequential posteriors
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Stellar Initial Mass Function

48



Stellar Initial Mass Function: the distribution of star masses
after a star formation event within a specified volume of space

Molecular cloud → Protostars → Stars

Image: adapted from http://www.astro.ljmu.ac.uk
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Broken power-law
(Kroupa, 2001)

Φ(M) ∝ M−αi ,

M1i ≤ M ≤ M2i

α1 = 0.3 for 0.01 ≤ M/M∗Sun ≤ 0.08 [Sub-stellar]
α2 = 1.3 for 0.08 ≤ M/MSun ≤ 0.50
α3 = 2.3 for 0.50 ≤ M/MSun ≤ Mmax

Many other models, e.g. Salpeter (1955); Chabrier (2003)
∗1 MSun = 1 Solar Mass (the mass of our Sun)
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ABC for the Stellar Initial Mass Function
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IMF Likelihood

Start with a power-law distribution: each star’s mass is
independently drawn from a power law distribution with density

f (m) =

(
1− α

M1−α
max −M1−α

min

)
m−α, m ∈ (Mmin,Mmax)

Then the likelihood is

L(α | m1:ntot ) =

(
1− α

M1−α
max −M1−α

min

)ntot

×
ntot∏
i=1

m−αi

ntot = total number of stars in cluster
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Observational limitations: aging

Lifecycle of star depends on mass → more massive stars die faster

Cluster age of τ Myr → only observe stars with masses
< Tage ≈ τ−2/5 × 108/5

If age = 30 Myr so the aging cutoff is Tage ≈ 10 MSun

Then the likelihood is

L(α | m1:nobs , ntot) =

(
1− α

T 1−α
age −M1−α

min

)nobs
(

nobs∏
i=1

m−αi

)
× P(M > Tage)

ntot−nobs

ntot = # of stars in cluster

nobs = # stars observed in cluster

Image: http://scioly.org
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Observational limitations: completeness

Completeness function:

P(observing star | m) =


0, m < Cmin
m−Cmin

Cmax−Cmin
, m ∈ [Cmin,Cmax]

1, m > Cmax

Probability of observing a particular star given its mass

Depends on the flux limit, stellar crowding, etc.

Image: NASA, J. Trauger (JPL), J. Westphal (Caltech)
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Observational limitations: measurement error

Incorporating log-normal measurement error gives our final likelihood:

L(α | m1:nobs
, ntot ) =(

P(M > Tage ) +

(
1− α

M1−α
max − M1−α

min

)∫ Cmax

Cmin

M−α ×
(
1−

M − Cmin

Cmax − Cmin

)
dM

)ntot−nobs

×
nobs∏
i=1

{∫ Tage

2
(2πσ2)

− 1
2 m−1

i e
− 1

2σ2 (log(mi )−log(M))2
(

1− α

M1−α
max − M1−α

min

)
M−α

×
(
I{M > Cmax} +

(
M − Cmin

Cmax − Cmin

)
I{Cmin ≤ M ≤ Cmax}

)
dM

}
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IMF
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Simulation Study: forward model

Draw from

f (m) =

(
1− α

601−α − 21−α

)
m−α, m ∈ (2, 60)

Aged 30 Myrs

Observational completeness:

P(obs | m) =


0, m < 4
m−2
2 , m ∈ [2, 4]

1, m > 4.

Uncertainty: logM = logm + 0.25η (with η ∼ N(0, 1))

Prior: α ∼ U[0, 6]∗
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Simulation Study: summary statistics

We want to account for the following with our summary statistics
and distance functions:

1. Shape of the observed Mass Function

ρ1(msim,mobs) =

[∫ {
f̂logmsim

(x)− f̂logmobs
(x)
}2

dx

]1/2
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2. Number of stars observed

ρ2(msim,mobs) = |1− nsim/nobs |

msim = masses of the stars simulated from the forward model
mobs = masses of observed stars
nsim = number of stars simulated from the forward model
nobs = number of observed stars
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Simulation Study

1 Draw n = 103 stars
2 IMF slope α = 2.35 with Mmin = 2 and Mmax = 60
3 N = 103 particles
4 T = 30 sequential time steps
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Simulation Study results

1 Draw n = 103 stars

2 IMF slope α = 2.35 with Mmin = 2 and Mmax = 60

3 N = 103 particles

4 T = 30 sequential time steps
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Summary

ABC can be a useful tool when data are too complex to define a
reasonable likelihood

Selection of good summary statistics is crucial for ABC posterior to
be meaningful
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THANK YOU!!!
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